首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45864篇
  免费   7772篇
  国内免费   9564篇
测绘学   4389篇
大气科学   10592篇
地球物理   9051篇
地质学   17694篇
海洋学   5058篇
天文学   6487篇
综合类   2785篇
自然地理   7144篇
  2024年   92篇
  2023年   498篇
  2022年   1240篇
  2021年   1597篇
  2020年   1753篇
  2019年   1963篇
  2018年   1576篇
  2017年   1964篇
  2016年   1973篇
  2015年   2166篇
  2014年   2870篇
  2013年   3624篇
  2012年   2955篇
  2011年   3166篇
  2010年   2782篇
  2009年   3541篇
  2008年   3596篇
  2007年   3577篇
  2006年   3370篇
  2005年   2797篇
  2004年   2501篇
  2003年   2134篇
  2002年   1703篇
  2001年   1473篇
  2000年   1302篇
  1999年   1148篇
  1998年   1046篇
  1997年   818篇
  1996年   633篇
  1995年   603篇
  1994年   520篇
  1993年   485篇
  1992年   326篇
  1991年   266篇
  1990年   205篇
  1989年   171篇
  1988年   155篇
  1987年   76篇
  1986年   86篇
  1985年   89篇
  1984年   54篇
  1983年   36篇
  1982年   40篇
  1981年   32篇
  1980年   39篇
  1979年   15篇
  1978年   19篇
  1977年   35篇
  1976年   26篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
81.
周海光 《地球物理学报》2018,61(9):3617-3639
2016年6月23日14—15时,江苏省阜宁县突遭"增强藤田"4级龙卷、强风、短时强降水和冰雹等强对流天气,致使99人罹难,800多人受伤,属极其罕见的极端天气事件.本文利用加密自动站数据、探空数据、单部雷达观测数据以及双多普勒雷达三维风场反演数据,研究了此次龙卷发生的天气背景、龙卷超级单体的三维结构及其演变特征.研究表明:(1)龙卷发生期间,阜宁处于地面暖湿舌内、地面有γ中尺度气旋和辐合线;环境大气抬升凝结高度很低、中低层有很强的水平风的垂直切变;这有利于龙卷的生成.(2)此次龙卷超级单体左移风暴的低层有钩状回波和入流缺口,有界弱回波区位于垂直剖面中低层、悬垂回波位于风暴前部高层.(3)龙卷发生前,风暴质心高度、最大反射率因子高度和风暴回波顶高度均持续增加,风暴垂直累积液态含水量激增;龙卷发生在上述参数的数值首次同时减小时.(4)双多普勒雷达反演的三维风场揭示,超级单体形成之前的对流风暴内部中低层已经有中尺度气旋形成,中尺度气旋伴随着超级单体的生成、发展和强化的各个阶段.中尺度气旋位于钩状回波顶端、其南端有反气旋,此涡旋偶对于中层动量下传、龙卷生成、发展、加强和触地具有重要作用.  相似文献   
82.
郝国成  白雨晓  吴敏  王巍  刘辉 《地球物理学报》2018,61(10):4063-4074
地球天然脉冲电磁场(ENPEMF)信号,可理解为地球天然变化磁场的瞬间扰动,携带了大量有用的地质构造及其动力学信息.研究ENPEMF信号所蕴含的时间-频率联合分布特点,有利于深入了解目标对象的地球物理现象及其地质动力学原理.本文针对ENPEMF信号的非平稳特点,在数据驱动时频分析方法(DDTFA)的基础上提出了基于二值化同步压缩小波变换的改进算法(BSWT-DDTFA).该算法可以实现数据驱动初始相位自动赋值的功能,具有自适应性.实验仿真和实际数据均证明了该改进算法不仅能够得到较为精确的频率曲线和更加清晰的时频分布,而且具有较强的抗噪声能力.以2013年芦山MS7.0地震为例,利用BSWT-DDTFA方法提取ENPEMF信号的时频特性,结果表明ENPEMF信号的时间-频率-幅度分布在震前有明显的异常特征.  相似文献   
83.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
84.
The persistence effect contribution of legacy nutrients is often cited as a reason for little or no improvement in water quality following extensive implementation of watershed nutrient mitigation actions, yet there is limited knowledge concerning factors influencing this response, often called the “persistence effect.” Here, we adopted detrended fluctuation analysis and Spearman analysis methods to assess the influence of land use on the watershed phosphorus (P) persistence effect, using monthly water quality records during 2010–2016 in 13 catchments within a drinking water reservoir watershed in eastern China. Detrended fluctuation analysis was used to calculate the Hurst exponent α to assess watershed legacy P characteristics (α  ≈ 0.5, α  > 0.5, and α  < 0.5 indicate white noise, persistence, and anti‐persistence, respectively). Results showed weak to strong P persistence (0.60–0.81) in the time series of riverine P in the 13 catchments. The Hurst exponent α had negative relationships with agricultural land (R = ?.47, p = .11) and developed land (R = ?.67, p = .01) and a positive relationship with forest land cover (R = .48, p = .10). The persistence effect of riverine P was mainly determined by retention ability (biogeochemical legacy) and migration efficiency (hydrological legacy). A catchment with strong retention capacity (e.g., biomass uptake/storage and soil PO4 sorption) and low migration efficiency results in a stronger persistence effect for riverine P. In practice, source control is more effective in catchments with weak persistence, whereas sink control (e.g., riparian buffers and wetlands) is preferred in catchments with strong persistence effects.  相似文献   
85.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
86.
To investigate stable isotopic variability of precipitation in Singapore, we continuously analysed the δ‐value of individual rain events from November 2014 to August 2017 using an online system composed of a diffusion sampler coupled to Cavity Ring‐Down Spectrometer. Over this period, the average value (δ18OAvg), the lowest value (δ18OLow), and the initial value (δ18OInit) varied significantly, ranging from ?0.45 to ?15.54‰, ?0.9 to ?17.65‰, and 0 to ?13.13‰, respectively. All 3 values share similar variability, and events with low δ18OLow and δ18OAvg values have low δ18OInit value. Individual events have limited intraevent variability in δ‐value (Δδ) with the majority having a Δδ below 4‰. Correlation of δ18OLow and δ18OAvg with δ18OInit is much higher than that with Δδ, suggesting that convective activities prior to events have more control over δ‐value than on‐site convective activities. The d‐excess of events also varies considerably in response to the seasonal variation in moisture sources. A 2‐month running mean analysis of δ18O reveals clear seasonal and interannual variability. Seasonal variability is associated with the meridional movement of the Intertropical Convergence Zone and evolution of the Asian monsoon. El Niño–Southern Oscillation is a likely driver of interannual variability. During 2015–2016, the strongest El Niño year in recorded history, the majority of events have a δ18O value higher than the weighted average δ18O of daily precipitation. δ18O shows a positive correlation with outgoing longwave radiation in the western Pacific and the Asian monsoon region, and also with Oceanic Niño Index. During El Niño, the convection centre shifts eastward to the central/eastern Pacific, weakening convective activities in Southeast Asia. Our study shows that precipitation δ‐value contains information about El Niño–Southern Oscillation and the Intertropical Convergence Zone, which has a significant implication for the interpretation of water isotope data and understanding of hydrological processes in tropical regions.  相似文献   
87.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   
88.
This study aimed to map water features using a Landsat image rather than traditional land cover. We involved the original bands, spectral indices and principal components (PCs) of a principal component analysis (PCA) as input data, and performed random forest (RF) and support vector machine (SVM) classification with water, saturated soil and non-water categories. The aim was to compare the efficiency of the results based on various input data. Original bands provided 93% overall accuracy (OA) and bands 4–5–7 were the most informative in this analysis. Except for MNDWI (modified normalized differenced water index, with 98% OA), the performance of all water indices was between 60 and 70% (OA). The PCA-based approach conducted on the original bands resulted in the most accurate identification of all classes (with only 1% error in the case of water bodies). We therefore show that both water bodies and saturated soils can be identified successfully using this approach.  相似文献   
89.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   
90.
震后建筑进度BIM估计模型改进   总被引:1,自引:0,他引:1       下载免费PDF全文
传统震后建筑进度BIM估计模型,未考虑精益管理对建筑施工的影响,造成建筑成本浪费较多,影响后期建筑施工进度。本文构建基于BIM和精益管理的震后建筑进度评估模型,根据模型细分震后建筑进度评估过程,在此基础上根据BIM实施三维算量,采用进度计划编制子模型获取各分项工程量,确定建筑施工的主要进度计划,实现对建筑进度计划的编制;通过虚拟施工和现实施工两条主线,利用进度控制子模型实现对施工状态的模拟和精益管理。以此为基础,进行挣值分析比较计划施工成本、实际施工成本和挣值曲线,获取震后建筑的施工进度与成本情况。实验结果说明,本文构建的模型可对震后建筑进度和工程成本进行精准估计,能够减少成本浪费。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号